Large induced trees in Kr-free graphs
نویسندگان
چکیده
For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of G that is a tree. In this paper, we study the problem of bounding t(G) for graphs which do not contain a complete graph Kr on r vertices. This problem was posed twenty years ago by Erdős, Saks, and Sós. Substantially improving earlier results of various researchers, we prove that every connected triangle-free graph on n vertices contains an induced tree of order √ n. When r ≥ 4, we also show that t(G) ≥ log n 4 log r for every connected Kr-free graph G of order n. Both of these bounds are tight up to small multiplicative constants, and the first one disproves a recent conjecture of Matoušek and Šámal.
منابع مشابه
Chromatic number and minimum degree of Kr+1-free graphs
Let (G) be the minimum degree of a graph G: A number of results about trianglefree graphs determine the maximum chromatic number of graphs of order n with (G) n=3: In this paper these results are extended to Kr+1-free graphs of order n with (G) (1 2= (2r 1))n: In particular: (a) there exist Kr+1-free graphs of order n with (G) > (1 2= (2r 1))n o (n) and arbitrary large chromatic number; (b) if ...
متن کاملDense graphs with small clique number
We consider the structure of Kr-free graphs with large minimum degree, and show that such graphs with minimum degree δ > (2r − 5)n/(2r − 3) are homomorphic to the join Kr−3 ∨ H where H is a triangle-free graph. In particular this allows us to generalize results from triangle-free graphs and show that Kr-free graphs with such minimum degree have chromatic number at most r+ 1. We also consider th...
متن کاملSubgraphs in vertex neighborhoods of Kr-free graphs
The neighbourhood of every vertex of a triangle-free graph forms an independent set. In 1981, Janos Pach characterized those triangle-free graphs where every independent set belongs to the neighbourhood of a vertex. I will present alternative characterizations and indicate some applications of this result. There are two natural ways to generalize this problem to Kr-free graphs: Characterize tho...
متن کاملStrong Turán Stability
We study maximal Kr+1-free graphs G of almost extremal size—typically, e(G) = ex(n,Kr+1) − O(n). We show that any such graph G must have a large amount of ‘symmetry’: in particular, all but very few vertices of G must have twins. (Two vertices u and v are twins if they have the same neighbourhood.) As a corollary, we obtain a new, short proof of a theorem of Simonovits on the structure of extre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 99 شماره
صفحات -
تاریخ انتشار 2009